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6-18. Displacement vectors far i hour (a) and far two i hours 
(b). The vector in (a) is obtained from that in Fig. 6-17 by 

multiplying ! hour by the velocity, a quantity with dimensions. 

The vector in Wis obtained from that in (a) by multiplying by 
the pure number 2. 

6-19. A flash photograph of 

two golf balls released simul
taneously from the mechanism 

shown. One of the balls was 
allowed to drop freely, and the 

other was projected horizontally 
with an initial velocity of 2 m/sec. 

The light flashes were :fo of a sec
ond apart. The white lines in the 

figure are a series of parallel 
strings placed behind the golf 
balls, six inches apart. Why do 

the strings appear to be in the 
foreground? 
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by multiplying the original displacement vector by 
the number 2. The total displacement of 300 
miles northeast, as in Fig. 6-18 (b), can usefully 
be represented on the same vector diagram as th 
original displacement. It should not be place 
on the same diagram as the velocity vector of 
300 mi/hr because they are two different things, 
different physical quantities with different units. 

6-5. Velocity Changes and Constant Vector 
Acceleration 

Fig. 6-19 is a multiple-flash photograph of two 
balls. The ball at the left is falling straight down. 
Let us analyze its motion by finding the velocity 
vectors at successive intervals as the ball falls. 
We can get the average velocity vector for a given 
time interval by measuring the distance between 
two images of the ball and dividing by the time 
between the flashes which made those images. 
This gives us the length of the velocity vector; 
its direction is the direction of motion of the 
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6-20. The length of the orrows is equal to 2! times the dis· 

placements of the left-hand ball in Fig. 6-19 during the last 

eight successive intervals of '1r; of a second. Because we know 

the actual separations of the white lines in Fig. 6-19 and the 

time intervals, we can turn the magnitudes of these displace

ments into speeds. The scale enables you to read the lengths of 
the arrows directly as speeds in cm/sec. 

ball from one image to the other. In Fig. 6-20 
we have measured off the successive displace
ments and put them side by side. The white 
strings in Fig. 6-19 are 6 inches apart and 
the interval between flashes is 3

1
0 of a second. 

Using these facts, we have computed a scale so 
that we can read these vectors directly as the 
average velocities. 

A glance at Fig. 6-20 shows that the velocity 
vector changes steadily. In each successive inter
val it increases by the same amount. Conse
quently, we can find the velocity as V:, = V'; + n A~ 
Here V'; is the velocity vector with which we start. 
Ali is the constant change in velocity that occurs 
in each interval. By adding n of these changes to 
the original velocity, we get the velocity n intervals 
further along. 

We can rewrite the last equation so that it 
more closely resembles the equations we developed 
for the description of motion along a pre
assigned path. (See Chapter 5, especially Sec
tions 5-6 and 5-7.) There we defined a= Av/At, 
that is, the acceleration along the path. Here 
by dividing AV' by At we shall introduce the 
vector acceleration a= Si!/ At. Using it, our last 
equation becomes 

_, _, " Al! 
Vn = vi + n u.t At 

= V'; +at. 

In the last line of this· equafion we have replaced 
n At by t, the time during which the velocity has 
changed from its initial va~ue V'; to its value in 
the nth time interval. 

The velocity of the falling ball really increases 
steadily, as we can show by taking flash pictures 
at smaller and smaller time intervals. Therefore, 
after any time interval t it is!\ = V'; + at. 

We have just described the motion of a falling 
ball in vector language. But since the ball moves 
on a predictable straight downward path, we 
hardly need the vectors. With speed and ac
celeration along the path we could have done the 
analysis equally easily. We would only need to 
add a statement that the motion is always straight 
down. The vector language, however, becomes 
far more useful when we analyze a more com
plicated motion. To see this let us get back to 
Fig. 6-19 and study the motion of the other ball, 
the one which moves out to the right in the figure. 

The second ball in Fig. 6-19 moves both to 
the right and down. From the fact that the dis
tance between the positions of the ball at s~ccessive 
flashes of the strobe light is greater for the later 
pictures, we see that the speed is increasing. 
Since the path is not a straight line, the direction 
of the velocity is changing too. We can analyze 
Fig. 6-19 to get the instantaneous velocity of the 
ball at various points along the path.* The 

*One way of finding the instantaneous velocity in this 
case is to note that the horizontal component of the 
velocity is constant. This follows from the fact that the 
horizontal displacement is the same in each time interval. 
We then get It from this fact and the fact that the in
stantaneous velocity vector always points in the direction 
of the path. (See Fig. 6--21.) Other methods of analysis 
may give more precise results. 

horizontal 

component 

2 m/sec 

6-21. How to find the instantaneous velocity vector. It is 

tangent to the path and of such length that its horizontal com
ponent is equal to the initial horizontal velocity of the projectile. 
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results of such an analysis are shown in Fig. 6-22. 
There both the position of the ball and its in
stantaneous velocity at 0.10-sec intervals are 
shown in the same graph. Note the two scales, 
one for distance and the other for velocity. 

Fig. 6-23 shows only the sequence of velocity 
vectors of Fig. 6-22. Here, however, we have 
drawn the velocity vectors from the same starting 
point. Examination of this figure shows us that 
the successive vectors are obtained by adding a 
velocity vector of about 1 m/sec (actually it is 
0.98 m/sec) directed vertically downward. We 
can express this rule in equation form. To do 
this we first express the components of the ve
locity. The horizontal component of velocity 

Vii = 2.00 m/sec, to the right 

stays constant throughout the flight. On the 
other hand, the vertical component is zero at 
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Velocity scale 

0 2 4 6 

m/sec 

6-22. The position and velocity of the "thrown" golf ball in 

fig. 6-19 are shown here on a single graph. 

0.00 sec. 

0.10 sec 

0.20 sec. 

0.30 sec. 

0.40 sec. 

0 1 2 3 

Scale m/sec 

-

6-23. A sequence that shows only the velocity vectors of 

fig. 6-22. Successive vectors are found by adding a constant 

vector directed vertically downward. 
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t = 0.00 sec and increases by 0.98 m/sec during 
each 0.10 sec. This is a uniform increase at the 
rate {of9:8 m/sec2,}so the vertical component of 
velocity at any time t is V:, = (9.8 m/sec2)t, down
ward, where t is the time in seconds. 

Now, combining the two rectangular compo
nents to give the vector velocity at any time t, we 
get 

11; = (2.00 m/sec), to the right 
+ (9.8 m/sec2)t, downward. 

The downward component of this vector is the 
product of a time and an acceleration. Since the 
time is measured in seconds and the acceleration 
in m/sec2

, the product has the units of m/sec, 
appropriate to a component of velocity. This is 
another illustration of the fact stated in Section 
6-4, that the multiplication of a vector by a scalar 
gives a new vector, having the same direction, 
but of magnitude equal to the product of the 
scalar times the original vector. 

We can put our equation for the motion of the 
ball thrown to the right into just the same form 
as we did for the ball falling straight down. 

·Here (2.00 m/sec, to the right) is the initial 
velocity V';, and (9.8 m/sec2, down) is the constant 
acceleration ll. So we get ~ = ~ + Zit again. 
Notice that the acceleration of both balls is down. 
Also the downward motion is the same for both, 
as you can see by looking across the picture to 
check that one moves down the same amount 
as the other in each time interval. The only 
thing different in describing the motion of the 
two balls is the value of ~. The acceleration 
vector a is the same for both. 

In Chapter 5 we found that Vt = vi + at de
scribed the speed at any time when there was 
constant acceleration along the path. The 
equation~ = V'; + Zit describes the velocity vector 
at any time as long as the acceleration vector is 
constant. Notice that the acceleration vector 
need not point along the path, as in the example 
of the right-hand ball in Fig. 6-19. Furthermore, 
a can be any constant vector of the right units. 
The 9.8 m/sec2

, down, which we found for the 
balls, is just a special value that occurs when 
balls move freely near the surface of the earth. 
In studying other motion we shall find other 
constant values of a - and also acceleration 
vectors that change as time goes on. For instance, 
by pushing a ball we can get any a we wish. 

---(a) 
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~; 
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6-24. To find the average acceleration in the interval L1t = 

12 - ti: First find S1 = Vl, - "ti and divide the vector difference 

by L1f. The result is the average acceleration vector ~ which 

can now be plotted with an appropriate scale as shown above. 

6-6. Changing Acceleration and the 

Instantaneous Acceleration Vector 
In the last section we described motion with 

constant vector acceleration. We introduced the 
vector acceleration to describe how the velocity 
vector changes. Even when the acceleration 
vector is not itself constant, we can introduce it 
in just the same way. We define it by a= Al!/At, 
where Avis the vector change in v during the time 
interval At. Notice that this vector acceleration 
has the same direction as the change AV' of the 
velocity; since this change need not be in the 
same direction as v: the acceleration a may point 
in any direction with respect to the motion. As 
we saw in the case of the right-hand ball in the 
last section, it need not be along the motion. 

The vector acceleration we have just defined is 
the average acceleration over the time interval At. 
If the acceleration is itself changing as time goes 
on, a will depend on the time interval we choose. 
Let us take an example. Suppose a speedboat 
moves along the path shown in Fig. 6-24 (a). 
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