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4-2. Interpolation and Extrapolation 

Suppose we measure the volumes and corre
sponding .radii of a number of spheres and plot 
the results (volume against radius). From the 
measurements, we are sure of the positions of a 
number of points on this plot, one for each sphere. 
If we now draw a smooth curve through these 
points, we obtain a curve from which we can find 
the volume of a sphere for any radius - not only 
for the values of the radii we have measured. The 
process of finding from this plot new values 
locate~e measured ones is called in
terpolation. Such a process is mea:ningful and 
useful when there are good reasons to believe that 
the curve is valid for values between the measured 
ones. Then one gets information which is not im
mediately available from the measurements. 

In the example of the relation between the 
volumes and radii of spheres, we know from the 
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equation V = 3 R3 that the volume changes 

smoothly with the radius. So a smooth curve 
through a few computed or measured points is 
reasonable. When no formula is kno.wn, how
ever, we depend only on experimental measure
ments. Then drawing a smooth curve expresses 
our belief that things change smoothly in nature. 
Interpolation always carries with it some element 
of risk. Even if things do change smoothly, we 
must get experimental values quite close to
gether if we want to know how the graph goes 
in any region where it curves sharply. Interpo
lation is of no use at all for graphs of functions 
which cannot be represented by smooth curves. 

Extrapolation, carrying the plot out beyond the 
range of the data, is even more risky. Error can 
arise here more easily, but so can discovery. For 
example, the problems encountered by aircraft 
in breaking the sound barrier were foreseen by 
extrapolation of equations which describe the 
exact behavior of aircraft at speeds well below 
that of sound. Extrapolation from the behavior 
of gases at normal temperatures leads to the idea 
of a lowest possible temperature, absolute zero, 
but about objects traveling close to the speed of 
light, extrapolation from ordinary experience 
leads to nonsense. 

In our examples of the volumes of a series of 
spheres and the areas of squares, extrapolation 
would be quite as safe as interpolation, for we 
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know the equations to hold according to the ge
ometry of Euclid for spheres or squares of any 
size, however large. But the physicist has to ad
mit that he has no certain test for the validity of 
Euclid's geometry beyond the distances to the 
galaxies. Indeed, theoretical physicists have in
vented proposals to change the laws of Euclid 
whenever enormous distances are involved. 
From the point of view of physics, the geometry 
of space is subject to experiment. Euclid's geom
etry may not be an accurate description of our 
measurements if the shapes we study range in 
size over many orders of magnitude. Naturally, 
we shall not change our description unless it gets 
us into trouble. In this course the geometry of 
Euclid will serve us well. 

4-3. The Inverse-Square Relation 
Look at a row of street lights that stretch away 

from you in the distance. The lamps themselves 
are all the same - that is, each gives off the same 
amount of light each second - but the closer 
each one is to you the more intense it appears. 
If the light spreads out equally in all directions 
(which is nearly true for a street lamp and a star 
and many other sources), it can be pictured as 
shown in Fig. 4-6. Here we consider just a por
tion of the light moving out through a sort of 
"pyramid" from the point P. As the distance 

4-6. The inverse-square relation. Light from a point (P) 
radiates in all directions. Since the light spreads out to cover 

four times the area at twice the distance, it follows that it can 

be only t as intense. Thus, when the distance is doubled, the 

intensity decreases.tot, or the intensity is inversely proportional 
to the square of the distance. 
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from the source increases, the light is spread over 
a greater area and the light appears less intense. 
This suggests that the intensity of the light is in
versely proportional to the area it falls on. 

1 
I oc -• A 

where I represents the intensity and A the area. 
For the moment let us assume that this relation 
holds for light. Later you will study light inten
sities experimentally. 

Each of the sides of the squares in Fig. 4-6 is 
proportional to its distance from P. Therefore, 
the area of each square is proportional to the 
square of that distance. If we call the distanced, 
this can be expressed as 

A oc d2• 

Combining this relation with I oc ~ we find that 

1 
I oc d2. 

This is the inverse-square relation, which for 
light says that the intensity is inversely propor
tional to the square of the distance from the 

source. 

In detail you can see that I oc ~2 by remember-

ing that 

means 

and that A oc d2 

A d2 

means A' = (d')2 • 

So, combining (1) and (2) gives 

This is the same as 

I' d2 
T = (d')2 • 

1 
[ocd2· 

(1) 

(2) 

(3) 

Note that relation (3) holds for a single source 
at distances d' and d. It also holds for two identi
cal sources, one at distance d' and the other at 
distance d. For example, suppose we have two 
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street lamps, which we call 1 and 2, at different 
distances di and d2 from a white wall which they 
illuminate. Then, their intensities at the wall are 

in the ratio 

Ii dz2 
I;,= di2 • 

This relation enables us to estimate the distance 
of one lamp if we have another equal lamp at a 
known distance. For example, suppose we find 
that a lamp 10 meters (d1) away gives an intensity 
that is 16 times that of an identical lamp at some 
unknown distance d2• (Photoelectric cells, 
camera light meters, and photographic plates 
can give accurate measures of relative intensity. 
So can the eye with the aid of a special screen on 
which to make comparisons.) How can we find 
d

2
? We know that Ii/12 is 16 and we know that 

di is 10 meters. 

16 = !1 = dl 
12 (10 meters)2 

Solving for d2 we get 

d2 = v16 x (10 meters)2 = 4 x 10 meters 
= 40 meters. 

This is just the method which gives us our 
knowledge of the distance of far-off stars, whose 
distance from us is too great to be measured by 
the geometric methods using the diameter of the 
earth's orbit as a base line. The measurement is 
made by comparing the intensity of the faint 
image of a faraway star on a photographic plate 
with the intensity of a near-by star which appears 
to give off the same amount of light. The meas
urement is at best a rough one, because we do not 
expect that the two stars are really equally strong 
sources of light. But in this rough way we can 
go far beyond the possibilities of triangulation 
methods and at least determine the order of 
magnitude of the distance to far-off stars. 

We can see how the inverse-square relation 
works by measuring the distance of a near-by 
star, using the inverse-square relation and com
paring our result with the distance measured 
geometrically. There is a good star for this pur
pose, a Centauri A. Judging from its color and 
calculated mass, this star is very similar to the 
sun. But the intensity of illumination here at the 
earth is 1011 times greater from the sun than from 
a Centauri A. From the inverse-square relation 
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